Content
Forms of a complex number
Form of a complex number:
- polar
- trigonometric
- exponential
Polar
Given the point (a, b) I sharpen the complex number z=a+b\cdot{i} whose module is r and its argument is \alpha, its representation in polar shape it is z=r_\alpha
Example of a polar
z=(-3)+4\cdot{i}
\|z\|=\|(-3)+4\cdot{i}\|=\sqrt{(-3)^2+4^2}=\sqrt{9+16}=\sqrt{25}=5
\alpha=\frac{atan2(4, -3)\cdot{360}}{2\cdot\pi}=\frac{2.2143\cdot{360}}{2\cdot\pi}=\frac{797.148}{2\cdot\pi}=126.8701^{\circ}\approx\frac{2\cdot\pi}{3}
So we have to:
Trigonometric
It can also be represented in trigonometric shape where
\begin{cases}a=r\cdot\cos{\alpha} \\ b=r\cdot\sin{\alpha} \end{cases}
with what we have
Example of a trigonometric
z=(-3)+4\cdot{i}
\|z\|=\|(-3)+4\cdot{i}\|=\sqrt{(-3)^2+4^2}=\sqrt{9+16}=\sqrt{25}=5
\alpha=\frac{atan2(4, -3)\cdot{360}}{2\cdot\pi}=\frac{2.2143\cdot{360}}{2\cdot\pi}=\frac{797.148}{2\cdot\pi}=126.8701^{\circ}\approx\frac{2\cdot\pi}{3}
So we have to:
Exponential
It can also be represented in exponentially shape where
\begin{cases}\sin\alpha=\frac{e^{\alpha\cdot{i}}-e^{(-\alpha)\cdot{i}}}{2\cdot{i}} \\ \cos\alpha=\frac{e^{\alpha\cdot{i}}+e^{(-\alpha)\cdot{i}}}{2}\end{cases}
with what we have to
Example of exponential
z=(-3)+4\cdot{i}
\|z\|=\|(-3)+4\cdot{i}\|=\sqrt{(-3)^2+4^2}=\sqrt{9+16}=\sqrt{25}=5
\alpha=\frac{atan2(4, -3)\cdot{360}}{2\cdot\pi}=\frac{2.2143\cdot{360}}{2\cdot\pi}=\frac{797.148}{2\cdot\pi}=126.8701^{\circ}\approx\frac{2\cdot\pi}{3}
So we have to: