Argument

Argument

Argument:

The value of the angle α\alpha receives the name of argument

For a given complex number, the argument supports an infinite set of values, which differ from each other in 2kπ;kZ2\cdot{k}\cdot{\pi}; k\in{\mathbb{Z}}

It's called principal value of the argument the one that meets 0α2π0\leq\alpha\leq{2}\cdot{\pi}

It can be calculated by:

α=Arg(z)=atan2(b,a)={arctan(ba)if a>0arctan(ba)+πif b0,a<0arctan(ba)πif b<0,a<0π2if b>0,a=0π2if b<0,a=0Undefinedif b=0,a=0\alpha=Arg(z)=atan2(b, a)=\begin{cases} \arctan(\frac{b}{a}) & \text{if }a > 0 \\ \arctan(\frac{b}{a}) + \pi & \text{if }b \geq 0, a < 0 \\ \arctan(\frac{b}{a}) - \pi & \text{if }b < 0, a < 0 \\ \frac{\pi}{2} & \text{if }b > 0, a = 0 \\ \frac{-\pi}{2} & \text{if }b < 0, a = 0 \\ \text{Undefined} & \text{if }b = 0, a = 0 \end{cases}

This result is obtained in radians and sometimes it will be useful to convert it to degrees:

α=atan2(b,a)3602π\alpha=\frac{atan2(b, a)\cdot{360}}{2\cdot\pi}

You can also use the following table that expresses trigonometric reasons:

>rad>rad >sinα>\sin \alpha >cosα>\cos \alpha tanα=sinαcosα\tan \alpha = \frac{\sin \alpha}{\cos \alpha}
>0>0^{\circ} >0>0 >0>0 >1>1 >0>0
>30>30^{\circ} >π6>\frac{\pi}{6} >12>\frac{1}{2} >32>\frac{\sqrt{3}}{2} >33=13>\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}
>45>45^{\circ} >π4>\frac{\pi}{4} >22=12>\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}} >22=12>\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}} >1>1
>60>60^{\circ} >π3>\frac{\pi}{3} >32>\frac{\sqrt{3}}{2} >12>\frac{1}{2} >3>\sqrt{3}
>90>90^{\circ} >π2>\frac{\pi}{2} >1>1 >0>0 >Undefined>\text{Undefined}
>180>180^{\circ} >π>\pi >0>0 >1>-1 >0>0
>270>270^{\circ} >3π2>\frac{3\cdot\pi}{2} >1>-1 >0>0 >Undefined>\text{Undefined}

Example of argument

{z=(3)+4iα=atan2(4,3)=2.2143 radians\begin{cases}z=(-3)+4\cdot{i} \\ \alpha=atan2(4, -3)=2.2143\text{ radians}\end{cases}

α=atan2(4,3)3602π=2.21433602π=797.1482π=126.87012π3\alpha=\frac{atan2(4, -3)\cdot{360}}{2\cdot\pi}=\frac{2.2143\cdot{360}}{2\cdot\pi}=\frac{797.148}{2\cdot\pi}=126.8701^{\circ}\approx\frac{2\cdot\pi}{3}

So we have to:

α2π3\alpha\approx\frac{2\cdot\pi}{3}