Medidas de posición
Las medidas de posición nos facilitan información sobre la serie de datos que estamos analizando
La descripción de un conjunto de datos, incluye como un elemento de importancia la ubicación de éstos dentro de un contexto de valores posible
Una vez definidos los conceptos básicos en el estudio de una distribución de frecuencias de una variable, estudiaremos las distintas formas de resumir dichas distribuciones mediante medidas de posición (o de centralización), teniendo presente el error cometido en el resumen mediante las correspondientes medidas de dispersión
Se trata de encontrar unas medidas que sinteticen las distribuciones de frecuencias. En vez de manejar todos los datos sobre las variables, tarea que puede ser pesada, podemos caracterizar su distribución de frecuencias mediante algunos valores numéricos, eligiendo como resumen de los datos un valor alrededor del cual se encuentran distribuidos los valores de la variable
Medidas de posición central
Las medidas de posición central o promedios, son valores alrededor de los cuales se agrupan los valores de la variable y que nos resumen la posición de la distribución sobre el eje horizontal. Además nos pueden ayudar a sintetizar la información que proporcionan los valores de la variable
De las medidas de posición central, las más utilizadas son la media aritmética, la mediana y la moda. En algunos casos concretos se utilizan la media armónica o la media geométrica
Media aritmética
La media aritmética, \overline{x}, se define como la suma de todos los valores observados dividido por el número total de observaciones:
Es decir: \overline{x}=\frac{x_1\cdot n_1+\cdots+x_k\cdot n_k}{N}=\frac{\sum\limits_{i=1}^{k} (x_i\cdot n_i)}{N}
Este es el promedio más utilizado en la práctica, por las siguientes ventajas:
- Tiene en cuenta todos los valores observados
- Es fácil de calcular y tiene un claro significado estadístico
- Es única
Sin embargo, tiene el inconveniente de la influencia que ejercen los valores extremos de la distribución sobre ella
La media recortada se obtiene calculando la media de los valores observados una
vez que se han eliminado un determinado porcentaje de los valores extremos (el mismo porcentaje a ambos lados)
Se suele utilizar para calcular la media de una variable en la que sabemos, o sospechamos, que hay valores extremos, ya que estos pueden «desviar» la media
Propiedades de la media aritmética
- La suma de las desviaciones (diferencias con el correspondiente signo) de los valores de la variable, respecto a su media aritmética, es igual a cero
\sum\limits_{i=1}^{k} (x_i-\overline{x})\cdot n_i=\sum\limits_{i=1}^{k} (x_i\cdot n_i)-\overline{x}\cdot \sum\limits_{i=1}^{k} n_i=N\cdot\overline{x}-N\cdot\overline{x}=0
- A la media le afectan los cambios de origen y escala. Si tenemos que u_i=a+b\cdot x_i, siendo a y b valores cualesquiera, con b distinto de cero (lo que equivale a hacer un cambio de origen y escala), la media aritmética puede expresarse de la forma siguiente: \overline{u}=a+b\cdot\overline{x}
Y demostrarlo es muy sencillo:
\overline{u}=\frac{\sum\limits_{i=1}^{k} (u_i\cdot n_i)}{N}=\frac{\sum\limits_{i=1}^{k} (a+b\cdot x_i)\cdot n_i}{N}=\frac{a}{N}\cdot \sum\limits_{i=1}^{k} n_i+\frac{b}{N}\cdot \sum\limits_{i=1}^{k} (x_i\cdot n_i)=\frac{a\cdot N}{N}+\frac{b}{N}\cdot \sum\limits_{i=1}^{k} (x_i\cdot n_i)=a+b\cdot\overline{x}Esta propiedad, eligiendo convenientemente los valores a y de b, es de gran utilidad en muchos casos, para simplificar el cálculo de la media aritmética
Ejemplo de media aritmética
En una campaña de vacunación, el número de personas vacunadas por horas en el transcurso de 50 horas, ha sido:
0, 3, 2, 2, 1, 4, 5, 2, 3, 2, 1, 0, 4, 3, 5, 3, 1, 4, 6, 1, 2, 3, 0, 4, 4, 5, 3, 1, 4, 2, 3, 1, 0, 6, 3, 2, 5, 3, 2, 3, 6, 2, 2, 5, 7, 4, 2, 7, 4, 2
Queremos calcular el número medio de personas vacunadas en esas 50 horas
Antes de ponernos a calcular la media, agrupamos los resultados en una tabla de frecuencias:
x_i | n_i | f_i | N_i | F_i |
0 | 4 | 0.08 | 4 | 0.08 |
1 | 6 | 0.12 | 10 | 0.2 |
2 | 12 | 0.24 | 22 | 0.44 |
3 | 10 | 0.2 | 32 | 0.64 |
4 | 8 | 0.16 | 40 | 0.8 |
5 | 5 | 0.1 | 45 | 0.9 |
6 | 3 | 0.06 | 48 | 0.96 |
7 | 2 | 0.04 | 50 | 1 |
Calculamos la media aritmética:
\overline{x}=\frac{\sum\limits_{i=1}^{k} (x_i\cdot n_i)}{N}=\frac{0 \cdot 4 + 1 \cdot 6 + 2 \cdot 12 + 3 \cdot 10 + 4 \cdot 8 + 5 \cdot 5 + 6 \cdot 3 + 7 \cdot 2}{50}=\frac{149}{50}=2.98\simeq 3Por tanto, el número medio de personas vacunadas por hora en ese intervalo de 50 horas ha sido de 3, porque se ha redondeado al alza
Mediana
La mediana se define como aquel valor de la variable que divide a la distribución en dos partes con el mismo número de observaciones, cuando estas están ordenadas de menor a mayor
Esta medida tiene la ventaja, respecto a la media, de que es menos sensible a los valores extremos
Ejemplo de mediana
Siguiendo con el ejemplo de la campaña de vacunación, ahora queremos calcular su mediana
Consultamos la tabla de frecuencias anterior y vemos que tenemos 50 datos, para encontrar el valor central lo dividimos entre 2 y como es par le sumaremos 1 al resultado. Si hubiese sido impar no sería necesario sumarle esa unidad, porque ya estaría dividido en dos partes con el mismo número de observaciones
\frac{50+1}{2}=25.5Al salirnos de resultado un valor cercano a 26 tomaremos 2 posiciones centrales: 25 y 26
Miramos en la columna de las frecuencias absolutas acumuladas en los valores 25 y 26, cuyos valores ambos son 3
Ahora calculamos el valor de la mediana: Me=\frac{3+3}{2}=3
Por tanto, la mitad de las personas vacunadas por hora en ese intervalo de 50 horas ha sido de 3 o menos y la otra mitad 3 o más
Moda
La moda se define como aquel valor de la variable cuya frecuencia no es superada por la de ningún otro valor
Puede darse el caso de que la máxima frecuencia corresponde a 2 o más valores de la variable, en ese caso, las distribuciones se dice que son bimodales o multimodales
Ejemplo de moda
Siguiendo con el ejemplo de la campaña de vacunación, ahora queremos calcular su moda
Miramos en la columna de las frecuencias absolutas y vemos que el mayor es 12, que corresponde al valor 2
Por tanto, el mayor número de personas vacunadas por hora en ese intervalo de 50 horas ha sido de 2
Media armónica
La media armónica se define como: Ma(X)=\frac{N}{\frac{x_1}{n_1}+\cdots+\frac{x_k}{n_k}}=\frac{N}{\sum\limits_{i=1}^{k} \frac{x_i}{n_i}}
Las ventajas de este promedio son:
- Es única
- Utiliza todos los valores observados de la variable
Tiene el inconveniente de que le influyen mucho los valores de la variable próximos a cero
Este promedio se utiliza en variables que miden velocidades, rendimientos y, en general, para variables que son el cociente de dos magnitudes
Ejemplo de Media armónica
Un ciclista de realiza un entrenamiento que consiste en 12 series de 1 km, cada una de ellas a velocidad constante. Los datos recogidos de su entrenamiento quedan recogidos en la siguiente tabla:
Serie | Velocidad (km/h) |
1 | 54 |
2 | 47 |
3 | 46 |
4 | 50 |
5 | 52 |
6 | 47 |
7 | 51 |
8 | 52 |
9 | 49 |
10 | 51 |
11 | 47 |
12 | 50 |
Queremos calcular la velocidad media del corredor durante su entrenamiento
No se puede aplicar la media aritmética porque la variable es el cociente de dos magnitudes (V=\frac{e}{t}), en este caso hay que aplicar la media armónica
Ma(X)==\frac{N}{\sum\limits_{i=1}^{k} \frac{x_i}{n_i}}=\frac{12}{\frac{1}{54}+\frac{2}{47}+\frac{3}{46}+\frac{4}{50}+\frac{5}{52}+\frac{6}{47}+\frac{7}{51}+\frac{8}{52}+\frac{9}{49}+\frac{10}{51}+\frac{11}{47}+\frac{12}{50}}=49.55139Por tanto, la velocidad media del ciclista ha sido de 49.55139 Km/h en las 12 series
Media geométrica
La media geométrica se define como: Mg(X)=\sqrt[N]{x_1^{n_1}+\cdots+x_k^{n_k}}=\sqrt[N]{\prod\limits_{i=1}^{k} x_i^{n_i}}
Tiene como ventaja, que en su cálculo se usan todos los valores observados de la variable
Tiene el inconveniente de la influencia que ejercen los valores cercanos a cero y los valores negativos si N es par
Este promedio se utiliza en variables que miden porcentajes, tasas o números índices
En cualquier conjunto de observaciones, si se pueden calcular, siempre se cumple que: Ma(X)< Mg(X)<\overline{X}
Ejemplo de media geomética
Tenemos el precio de cierto producto y sabemos que en los últimos 3 años su precio ha subido un 10%, un 20% y un 30%
Queremos saber cuánto ha sido la subida de media
Es decir, queremos saber a qué porcentaje tendría que haber subido cada año (el mismo porcentaje anual) para obtener al cabo de los tres años el mismo precio
Como se está calculando porcentajes no se puede usar la media aritmética, debemos usar la media geométrica
Mg(X)=\sqrt[N]{\prod\limits_{i=1}^{k} x_i^{n_i}}=\sqrt[3]{(1+\frac{10}{100})\cdot(1+\frac{20}{100})\cdot(1+\frac{30}{100})}=\sqrt[3]{1.1\cdot 1.20\cdot 1.3}=1.19721577Ahora, el resultado, lo pasamos a porcentaje: 1.19721577\cdot 100 =11.9721577\%
Por tanto, la subida de media anual durante los 3 últimos años ha sido de 11.9721577%