Content
Convergence
We are going to deal with the convergence of sequences deduced linearly from others based on the book by Julio Rey Pastor, Algebraic Analysis
General Criterion
Theorem
It (a_n)
with n\geq 1
a convergent limit sequence \alpha
and we consider the coefficients (\lambda_{i,n})
with n\geq 1, 1\leqslant i\leqslant n
that verify:
\underset {n \to \infty} {\lim} \lambda_{i,n} = 0, \forall i
\underset {n \to \infty} {\lim} \lambda_{1,n} + \lambda_{2,n} + \cdots + \lambda_{n,n} = \lambda
- And if the
\lambda_{i,j}
they are not positive, in addition,\left\|\lambda_{1,n}\right\| + \left\|\lambda_{2,n}\right\| + \cdots + \left\|\lambda_{n,n}\right\| \leqslant K
Demonstration
Given that c_n=a_1 \cdot \lambda_{1,n} + a_2 \cdot \lambda_{2,n} + \cdots + a_n \cdot \lambda_{n,n} = \alpha \cdot (\lambda_{1,n} + \lambda_{2,n} + \cdots + \lambda_{n,n}) + (a_1 - \alpha) \cdot \lambda_{1,n} + (a_2 - \alpha) \cdot \lambda_{2,n} + \cdots + (a_n - \alpha) \cdot \lambda_{n,n}
If we use \underset {n \to \infty} {\lim} a_n = \alpha
, we have to given \epsilon > 0
, \exists n_0
such that \left\|a_n - \alpha \right\| < \frac{\epsilon}{3\cdot K}
, \forall n \geqslant n_0
with K the value of property C)
For property A) there will be a value n_1
, so we will take a value greater than n_0
such that \left\|\lambda_{i,n}\right\| < \frac{\epsilon }{3 \cdot (\left\|a_1 - \alpha \right\| + \cdots + \left\|a_{n_0 - 1} - \alpha \right\|) }
, n\geqslant n_1
and 1 \leqslant i < n_0
By property B) we can deduce that there will be n_2
, so we will take a value greater than n_1
such that \left\|\lambda_{1,n} + \lambda_{2,n} + \cdots + \lambda_{n,n} - \lambda \right\| < \frac{\epsilon }{3 \cdot \left\| \alpha \right\|}
, \forall n \geq n_2
Using the previous results and the triangular inequality we have:
\left\| c_n - \alpha \cdot \lambda \right\| \leqslant \left\| \alpha \right\| \cdot \left\| \lambda_{1,n} + \lambda_{2,n} + \cdots + \lambda_{n,n} - \lambda \right\| + \left\| a_1 - \alpha \right\| \cdot \left\| \lambda_{1,n} \right\| + \cdots + \left\| a_{n_0 - 1} - \alpha \right\| \cdot \left\| a{{n_0 - 1},n} \right\| + \left\| a_{n_0} - \alpha \right\| \cdot \left\| a_{{n_0},n} \right\| + \cdots + \left\| a_n - \alpha \right\| \cdot \left\| \lambda_{n,n} \right\| < \left\| \alpha \right\| \cdot \frac{\epsilon}{3 \cdot \left\| \alpha \right\|} + \frac{\epsilon \cdot (\left\| a_1 - \alpha \right\| + \cdots + \left\| a_{n_0-1} - \alpha \right\|) }{3 \cdot (\left\| a_1 - \alpha \right\| + \cdots + \left\| a_{n_0-1} - \alpha \right\|)} + \frac{\epsilon}{3\cdot K} \cdot(\left\| \lambda_{n_0, n} \right\| + \cdots + \left\| \lambda_{n,n} \right\|) \leq \epsilon
Applying property C) in the last step, with which we have tested the general criterion
Notes on the general criterion
Let us consider a matrix with infinite rows and columns, in such a way that in the nth row we place the values (\lambda_{i, n})
with 1 \leq i \leq n
and we complete the row with 0
A=\begin{pmatrix}
\lambda_{1,1} & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots \\
\lambda_{1,2} & \lambda_{2,2} & 0 & 0 & \cdots & 0 & 0 & \cdots \\
\lambda_{1,3} & \lambda_{2,3} & \lambda_{3,3} & 0 & \cdots & 0 & 0 & \cdots \\
\lambda_{1,4} & \lambda_{2,4} & \lambda_{3,4} & \lambda_{4,4} & \cdots & 0 & 0 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots &\cdots & \cdots \\
\lambda_{1,n} & \lambda_{2,n} & \lambda_{3,n} & \lambda_{4,n} & \cdots & \lambda_{n,n} & 0 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots &\cdots & \cdots
\end{pmatrix}
With this matrix A, the sequence c_n
defined in the previous proof is obtained as:
\begin{pmatrix}
c_1\\
c_2\\
c_3\\
c_4\\
\cdots\\
c_n\\
\cdots
\end{pmatrix}=
A \cdot \begin{pmatrix}
a_1\\
a_2\\
a_3\\
a_4\\
\cdots\\
a_n\\
\cdots
\end{pmatrix}=\begin{pmatrix}
\lambda_{1,1} & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots \\
\lambda_{1,2} & \lambda_{2,2} & 0 & 0 & \cdots & 0 & 0 & \cdots \\
\lambda_{1,3} & \lambda_{2,3} & \lambda_{3,3} & 0 & \cdots & 0 & 0 & \cdots \\
\lambda_{1,4} & \lambda_{2,4} & \lambda_{3,4} & \lambda_{4,4} & \cdots & 0 & 0 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots &\cdots & \cdots \\
\lambda_{1,n} & \lambda_{2,n} & \lambda_{3,n} & \lambda_{4,n} & \cdots & \lambda_{n,n} & 0 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots &\cdots & \cdots
\end{pmatrix}\cdot \begin{pmatrix}
a_1\\
a_2\\
a_3\\
a_4\\
\cdots\\
a_n\\
\cdots
\end{pmatrix}
It is interesting that property A) of the theorem is telling us that each column of matrix A tends to 0 when n \to \infty
Property B) tells us that if we add the elements of each row and calculate the limit of those sums, when n \to \infty
, the limit is \lambda
Consequences of the general criterion
Properly applying the general criterion we can deduce some interesting results, some of them already known and others totally new
Limit of the arithmetic mean and the geometric mean of a sequence
Let's take \lambda_{i,n}=\frac{1}{n}
with i=1, \cdots, n
Whose positive coefficients satisfy A) and \lambda_{1,n} + \lambda_{2,n} + \cdots + \lambda_{n,n} = \frac{1}{n} + \cdots + \frac{1}{n} = 1
, then satisfy B) when \lambda = 1
If we consider a sequence (a_n)_{n\geq 1}
with limit \alpha
, by the general criterion it will fulfill that:
\underset {n \to \infty} {\lim} \frac{a_1 + \cdots + a_n}{n} = \alpha
That is, if the sequence has a limit, the sequence of the arithmetic means of the first n terms have the same limit (Rey Pastor attributes this result to Cauchy)
Furthermore, if a_n > 0
, taking logarithms, it will satisfy that:
\underset {n \to \infty} {\lim} \sqrt[n]{a_1 + \cdots + a_n} = \exp (\underset {n \to \infty} {\lim} \frac{\log a_1 + \cdots + \log a_n}{n}) = \exp (\log \alpha ) = \alpha
If we consider a positive sequence with limit, the sequence of geometric means of the first n terms have the same limit
Finally, given a sequence (b_n)_{n\geq 1}
, if we apply the criterion of geometric means taking a_1 = b_1
and a_n = \frac{b_n}{b_{n-1}}
(in this specific case we have to \sqrt[n]{a_1 + \cdots + a_n} = \sqrt[n]{b_n}
), will fulfill that:
\underset {n \to \infty} {\lim} \frac{b_n}{b_{n-1}} = b \Rightarrow \underset {n \to \infty} {\lim} \sqrt[n]{b_n} = b
Stolz criterion
The Stolz criterion is a particular case of convergence of a series deduced linearly from another
It (b_n)_{n\geqslant 1}
a succession of positive terms such that B_n = b_1 + \cdots + b_n\to \infty, n \to \infty
and (a_n)_{n\geqslant 1}
a convergent sequence with limit \alpha
, will fulfill that:
\underset {n \to \infty} {\lim} \frac{a_1 \cdot b_1 + \cdots + a_n \cdot b_n}{B_n} = \alpha
Following the general criterion we take \lambda_{i,n} = \frac{b_i}{B_n}
, for i = 1, \cdots, n
, will fulfill that:
\underset {n \to \infty} {\lim} \frac{b_i}{B_n} = 0
So A) of the general criterion is met and \lambda_{1,n} + \lambda_{2,n} + \cdots + \lambda_{n,n} = \frac{b_1 + \cdots + b_n}{B_n} = 1
, so B is also true)
In particular, given a sequence (d_n)_{n\geqslant 1}
and (b_n)_{n\geqslant 1}
, taking the previous result a_n = \frac{d_n}{b_n}
, it follows that:
\underset {n \to \infty} {\lim}\frac{d_n}{b_n} = l \Longrightarrow \underset {n \to \infty} {\lim}\frac{d_1 + \cdots + d_n}{b_1 + \cdots + b_n} = l
And if we take a succession (B_n)_{n\geqslant 1}
divergent, shall comply with the fact that:
\underset {n \to \infty} {\lim}\frac{D_1 + \cdots + D_n}{B_1 + \cdots + B_n} = l \Longrightarrow \underset {n \to \infty} {\lim}\frac{D_n}{B_n} = l
It will be enough for us to take d_n = D_n - D_{n-1}
for the previous case
This result is known as the Strolz criterion
Consequence I
Are (a_n)_n{n\geqslant 1}
and (b_n)_n{n\geqslant 1}
two sequences such that A_n = a_1 + \cdots + a_n
and B_n = b_1 + \cdots + b_n
If \underset {n \to \infty} {\lim}A_n = A
, \underset {n \to \infty} {\lim} B_n = B
and \left\|b_1\right\| + \cdots + \left\|b_n\right\| \leqslant K
, will fulfill that:
\underset {n \to \infty} {\lim} A_1 \cdot b_n + A_2 \cdot b_{n-1} + \cdots + A_n \cdot b_1 = A \cdot B
This result is a consequence of the general criterion taking \lambda_{i,n} = b_{n-i+1}
with i = 1, \cdots, n
Taking into account that \underset {n \to \infty} {\lim}b_{n-i+1} =\underset {n \to \infty}B_{n-i+1} - B_{n-i} = B - B = 0
, which implies A)
Of the condition \underset {n \to \infty} {\lim} B_n = B
B) and C) are deduced (in this case we should have checked that they were positive, so we use the condition \left\|b_1\right\| + \cdots + \left\|b_n\right\| \leqslant K
)
Consecuencia II
Are (a_n)_n{n\geqslant 1}
and (b_n)_n{n\geqslant 1}
two sequences such that \underset {n \to \infty} {\lim}a_n = \alpha
and \underset {n \to \infty} {\lim}b_n = \beta
, will fulfill that:
\underset {n \to \infty} {\lim} a_1 \cdot b_n + a_2 \cdot b_{n-1} + \cdots + a_n \cdot b_1 = \alpha \cdot \beta
This result is a consequence of the general criterion taking \lambda_{i,n} = \frac{b_{n-i+1}}{n}
To check A) we must observe the convergence of the sequence b_n
that assures us that \left\|b_n\right\|\leqslant C
, then \left\|\lambda_{i,n}\right\|\leqslant \frac{C}{n}\to 0, n\to\infty
If we apply the Stolz criterion we can check B) (we could also have applied the arithmetic means criterion):
\underset {n \to \infty} {\lim} \lambda_{1,n} + \lambda_{2,n} + \cdots +\lambda_{n,n} = \underset {n \to \infty} {\lim} \frac{b_1 + \cdots + b_n}{n} = \underset {n \to \infty} {\lim} b_n = \beta
Condition C) is again a consequence of the constraint of the sequence b_n
since it is fulfilled that \left\| \lambda_{1,n} \right\| + \left\| \lambda_{2,n} \right\| + \cdots + \left\| \lambda_{n,n} \right\| \leqslant C \cdot (\frac{1}{n} + \cdots + \frac{1}{n}) = C